The incidence of Aedes-borne pathogens has been increasing despite vector control efforts. Control strategies typically target households, where Aedes mosquitoes breed in household containers and bite indoors. However, our study in Kenyan cities Kisumu and Ukunda (2019-2022) reveals high Aedes abundance in public spaces, prompting the question: how important are non-household (NH) environments for dengue transmission and control? Using field data and human activity patterns, we developed an agent-based model simulating transmission across household (HH) and five NH environments, which was then used to evaluate preventive (before an epidemic) and reactive (after an epidemic commences) vector control scenarios. Our findings estimate over half of infections occur in NH settings, particularly workplaces, markets, and recreational sites. Control efforts in NH areas proved more effective than HH, contradicting the current global focus. Greater reductions in dengue cases occurred with early, high-coverage interventions, especially in NH locations. Additionally, local ecological factors, such as uneven water container distribution, influence control outcomes. This study underscores the importance of vector control in both household and non-household environments in endemic settings. It highlights a specific approach to inform evidence-based decision making to target limited vector control resources for optimal control.
Read full abstract