The mouse kidney transplantation model presents challenges in terms of surgical difficulty and low success rate, making it difficult to master. This study aims to provide a crucial model for transplantation immunology research by modifying and developing novel techniques for mouse kidney transplantation. A total of 57 pairs of mice were used to establish and compare the modified and innovative surgical techniques for mouse kidney transplantation. Three different surgical models were established, including the abdominal suture technique for orthotopic kidney transplantation, the abdominal cuff technique for orthotopic kidney transplantation, and the cervical cuff technique for ectopic kidney transplantation. BALB/c or C57BL/6 male mice, aged 8 to 12 weeks and weighed 20 to 25 g with specified pathogen free-grade were served as the donor mice or the recipient mice. The surgical technique characteristics, key surgical times, complications, and pathological examination in the early postoperative period were summarized and compared. Three different surgical models of mouse kidney transplantation were successfully established. The comparison of warm ischemic time for the 3 groups of mice showed no statistical significance (P=0.510 4). The abdominal suture group had the shortest total operation time of the donor compared with the abdominal cuff group and the cervical cuff group [(18.3±3.6) min vs (26.2±4.7) min and (22.8±2.5) min; both P<0.000 1]. There was a significant difference in cold ischemia time among the 3 groups (all P<0.000 1), with (60.8±4.1) min in the cervical cuff group, (43.3±5.0) min in the abdominal suture group, and (88.8±6.7) min in the abdominal cuff group. Due to different anastomosis methods, the cervical cuff group had the shortest time [(17.6±2.7) min], whereas the abdominal cuff group had the longest time [(38.8±5.4) min]. The total operation time for the recipients showed significant differences (P<0.000 1), with the abdominal suture group having the shortest time [(44.0±6.9) min], followed by the cervical cuff group [(64.1±5.2) min], and the abdominal cuff group [(80.0±6.0) min] being the longest. In the 32 mice of the abdominal suture group, there were 6 with intraoperative bleeding, including 1 arterial intimal injury bleeding and 5 with bleeding after vessel opening. Six mice had ureteral complications, including ureteral bladder anastomotic stenosis, necrosis, and renal pelvis dilation. Two mice had postoperative abdominal infections. In the abdominal cuff group, there was no intraoperative bleeding, but 6 mice showed mild arterial stenosis and 5 showed venous stenosis, 4 arterial injury, 4 arterial thrombosis, and 2 ureteral complications. No postoperative infections occurred in the mice. In the cervical cuff group, no intraoperative bleeding, arterial intimal injury, arterial/venous stenosis, or thrombosis were found in 13 mice. Five mice had ureteral complications, including ureteral necrosis and infection, which were the main complications in the cervical cuff group. The renal function in mice of the 3 groups remained stable 7 days after surgery. Hematoxylin and eosin staining and periodic acid-Schiff staining showed no significant differences in terms of acute rejection among the 3 surgical methods (all P>0.05). All 3 surgical methods are able to successfully establish mouse kidney transplantation models, with no significant differences observed in the short-term graft survival and acute rejection. The modified abdominal suture technique and abdominal cuff technique have their respective advantages in research applications. The novel cervical cuff technique for ectopic kidney transplantation model is relatively simple to be prepared and causes less trauma to the mice, providing more options for studies involving xenotransplantation, secondary transplantation, and local lymphatic drainage. However, the difficulty in harvesting the donor kidney and the high incidence of ureteral infections need further validation in long-term survival. This study holds important reference value for choosing the type of mouse kidney transplantation model for different research needs.