This study explores the influence of the interatomic structure of sodium aluminosilicate hydrate (N-A-S-H) with varying silica contents on the mechanical properties of metakaolin-based geopolymer. Geopolymer pastes comprising Si/Al ratios between 2.0 and 3.0 were synthesized. A larger number of Si-O-Si linkages compared to Si-O-Al linkages and a higher atomic number density were found in the geopolymers with higher silica contents, which enhanced the compressive strength of the geopolymer pastes up to the optimal Si/Al ratio of 2.5. The paste with a Si/Al = 2.5 exhibited a greater portion of Q4(1Al and 2Al) and denser morphology compared to the other geopolymer pastes. Furthermore, in-situ high-energy synchrotron X-ray scattering experiments were conducted to assess the elastic modulus of the aluminosilicate structure at a local atomic scale. The modulus value in real space decreases with increasing silica contents up to Si/Al = 2.5 and increases with the presence of excessive unreacted silica fume. The modulus value in reciprocal space for the axial and lateral directions both presented a positive value at the geopolymer comprising a Si/Al ratio higher than 2.5, indicating that the load-bearing property of N-A-S-H changed at higher Si/Al ratios. Moreover, the smallest difference between the strains along the axial and lateral directions was detected for the geopolymer with Si/Al = 2.5 in both the real and reciprocal space, owing to the most interconnected and flexible nanostructure, which led to the highest mechanical strength.
Read full abstract