Abstract Ultraviolet and near-infrared observations of auroral emissions from the footprint of Io's magnetic Flux Tube (IFT) mapping to Jupiter's ionosphere have been interpreted via a combination of the unipolar inductor model [Goldreich, P., Lynden-Bell, D., 1969. Astrophys. J. 156, 59–78] and the multiply-reflected Alfven wave model [ Belcher, J.W., 1987. Science 238, 170–176 ]. While both models successfully explain the general nature of the auroral footprint and corotational wake, and both predict the presence of multiple footprints, the details of the interaction near Io are complicated [ Saur, J., Neubauer, F.M., Connerney, J.E.P., Zarka, P., Kivelson, M.G., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 537–560; Kivelson, M.G., Bagenal, F., Kurth, W.S., Neubauer, F.M., Paranicas, C., Saur, J., 2004. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, UK, pp. 513–536 ]. The auroral footprint brightness is believed to be a good remote indicator of the strength of the interaction near Io, indicating the energy and current strength linking Io with Jupiter's ionosphere. The brightness may also depend in part on local auroral acceleration processes near Jupiter. The relative importance of different physical processes in this interaction can be tested as Jupiter's rotation and Io's orbital motion shift Jupiter's magnetic centrifugal equator past Io, leading to longitudinal variations in the plasma density near Io and functionally different variations in the local field strength near Jupiter where the auroral emissions are produced. Initial HST WFPC2 observations found a high degree of variability in the footprint brightness with time, and some evidence for systematic variations with longitude [Clarke, J.T., Ben Jaffel, L., Gerard, J.-C., 1998. J. Geophys. Res. 103, 20217–20236], however the data were not of sufficient quality to determine functional relationships. In this paper we report the results from a second, more thorough study, using a series of higher resolution and sensitivity HST STIS observations and a model for the center to limb dependence of the optically thin auroral emission brightness based on measurements of the auroral curtain emission distribution with altitude. A search for correlations between numerous parameters has revealed a strong dependence between Io's position in the plasma torus and the resulting footprint brightness that persists over several years of observations. The local magnetic field strength near Jupiter (i.e. the size of the loss cone) and the expected north/south asymmetry in auroral brightness related to the path of currents generated near Io through the plasma torus en route to Jupiter appear to be less important than the total plasma density near Io. This is consistent with the near-Io interaction being dominated by collisions of corotating plasma and mass pickup, a long-standing view which has been subject to considerable debate. The brightness of the auroral footprint emissions, however, does not appear to be proportional to the incident plasma density or energy, and the interpretation of this result will require detailed modeling of the interaction near Io.
Read full abstract