Metal matrix composites (MMCs) reinforced with Copper Oxide (CuO) and Aluminum (Al) 6061 (Al6061) alloys are being studied to determine their mechanical, physical, and dry sliding wear properties. The liquid metallurgical stir casting method with ultrasonication was employed for fabricating Al6061-CuO microparticle-reinforced composite specimens by incorporating 2–6 weight percent (wt.%) CuO particles into the matrix. Physical, mechanical, and dry sliding wear properties were investigated in Al6061-CuO MMCs, adopting ASTM standards. The experimental results show that adding CuO to an Al6061 alloy increases its density by 7.54%, hardness by 45.78%, and tensile strength by 35.02%, reducing percentage elongation by 40.03%. Dry wear measurements on a pin-on-disc apparatus show that Al6061-CuO MMCs outperform the Al6061 alloy in wear resistance. Al6061-CuO MMCs’ strength has been predicted using many strengthening mechanism models and its elastic modulus through several models. The strengthening of Al6061-CuO MMCs is predominantly influenced by thermal mismatch, more so than by Hall–Petch, Orowan strengthening, and load transfer mechanisms. As the CuO content in the composite increases, the strengthening effects due to dislocation interactions between the matrix and reinforcement particles, the coefficient of thermal expansion (CTE) difference, grain refinement, and load transfer consistently improve. The Al6061-CuO MMCs were also examined using an optical microscope (OM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) before and after fracture and wear tests. The investigation shows that an Al6061-CuO composite material with increased CuO reinforcement showed higher mechanical and tribological characteristics.
Read full abstract