In response to the growing demand for economic and social development, there has been a significant increase in the integration of distributed generation (DG) into distribution networks. This paper proposes a dynamic risk assessment method for voltage violations in distribution networks with DG. Firstly, considering the characteristics of random variables such as load and DG, a probability density function estimation method based on boundary kernel density estimation is proposed. This method accurately models the probability of random variables under different time and external environmental conditions, such as wind speed and global horizontal radiation. Secondly, to address the issue of correlated DG in the same region, an independent transformation method based on the Rosenblatt inverse transform is proposed, which enhances the accuracy of probabilistic load flow. Thirdly, a voltage violation severity index based on the utility function is proposed. This index, in combination with probabilistic load flow results, facilitates the quantitative assessment of voltage violation risks. Finally, the accuracy of the proposed method is verified on the IEEE-33 system.
Read full abstract