Simple SummaryRobotic liver surgery is being applied with increasing frequency. Comparable, and in specific settings superior, perioperative outcomes compared to laparoscopic liver surgery have been reported. In its current form, the most commonly mentioned advantage of robotic surgery is improved dexterity. Important obstacles to its wider implementation in daily clinical practice are the associated costs, technical difficulties, and a scarce amount of evidence. Robotic liver surgery will likely continue to evolve in parallel with technological developments that enhance the robots’ abilities.In parallel with the historical development of minimally invasive surgery, the laparoscopic and robotic approaches are now frequently utilized to perform major abdominal surgical procedures. Nevertheless, the role of the robotic approach in liver surgery is still controversial, and a standardized, safe technique has not been defined yet. This review aims to summarize the currently available evidence and prospects of robotic liver surgery. Minimally invasive liver surgery has been extensively associated with benefits, in terms of less blood loss, and lower complication rates, including liver-specific complications such as clinically relevant bile leakage and post hepatectomy liver failure, when compared to open liver surgery. Furthermore, comparable R0 resection rates to open liver surgery have been reported, thus, demonstrating the safety and oncological efficiency of the minimally invasive approach. However, whether robotic liver surgery has merits over laparoscopic liver surgery is still a matter of debate. In the current literature, robotic liver surgery has mainly been associated with non-inferior outcomes compared to laparoscopy, although it is suggested that the robotic approach has a shorter learning curve, lower conversion rates, and less intraoperative blood loss. Robotic surgical systems offer a more realistic image with integrated 3D systems. In addition, the improved dexterity offered by robotic surgical systems can lead to improved intra and postoperative outcomes. In the future, integrated and improved haptic feedback mechanisms, artificial intelligence, and the introduction of more liver-specific dissectors will likely be implemented, further enhancing the robots’ abilities.
Read full abstract