During chronic liver injury, inflammation leads to liver fibrosis, particularly due to the activation of hepatic stellate cells (HSCs). The involvement of inflammatory cytokines in HSC activation and the interplay among different liver cells are elaborated. To examine their interactions invitro, many cultured liver tissue models are performed in organoid or spheroid culture with random 3D structure. Herein, we demonstrated the hierarchical coculture of primary rat hepatocytes with non-parenchymal cells such as the human-derived HSC line (LX-2) and liver sinusoidal endothelial cell line (TMNK-1). The cocultured tissue had high usability with simple operation of separating solid and liquid phases with improved liver functions such as albumin production and hepatic cytochrome P450 3A4 activity. We also studied the effects of stimulation by both oxygen tension and the key pro-fibrogenic cytokine, transforming growth factor beta (TGF-β), on HSC activation. Gene expression of collagen type I and alpha-smooth muscle actin were enhanced in the hierarchical coculture under lower oxygen tension and TGF-β1 stimulation. Therefore, this hierarchical invitro cocultured liver tissue could provide a useful platform as a disease model for elucidating the interactions of various liver cell types and biochemical signals in future liver fibrogenesis studies.
Read full abstract