Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers but are frequently deficient or dysfunctional in patients with hepatocellular carcinoma (HCC). In the present study, we explored a novel therapy for HCC using NK cells derived from donor liver graft perfusate. These liver-derived NK cells, named LMNC-NK cells, are more abundant in liver mononuclear cells (LMNCs) than in peripheral blood mononuclear cells (PBMCs) from the same donor. We developed a method to expand LMNC-NK cells by 33.8±54.4-fold, enhancing their cytotoxic properties and cytokine production, including granzyme B, CD107a, TNF-α, and IFN-γ. These cells also showed an increased expression of cytotoxicity receptors. An RNA-seq analysis revealed considerable differences in gene expression between LMNC-NK and PBMC-NK cells, with 453 genes upregulated and 449 downregulated in LMNC-NK cells. These genes are involved in the mitogen-activated protein kinase cascade and cell differentiation, explaining the increased activity of LMNC-NK cells. Quantitative reverse transcription polymerase chain reaction confirmed the significant upregulation of TLR6, KIT, MMP14, IRF8, TCF7, FCERIG, LEF1, NLRp3, and IL16 in LMNC-NK cells. LMNC-NK cells effectively eliminated HepG-2-Luc cells in vitro, and in an orthotopic murine model of HCC, they exhibited a potent anti-tumor effect, outperforming PBMC-NK cells. The expression of the activation marker CD69+ in LMNC-NK cells was also significantly higher among tumor-infiltrating lymphocytes compared to PBMC-NK cells. Our research suggests that the adoptive transfer of LMNC-NK cells could be a promising treatment for HCC, offering a novel and effective source of NK cells with superior cytotoxic functions.
Read full abstract