Apparent digestibility coefficients (ADCs) of dry matter, crude protein, crude lipid, nitrogen-free extract, energy and essential amino acids in animal-based feed ingredients were determined for olive flounder (Paralichthys olivaceus). A reference diet (RF) was formulated to contain 1.0% chromic oxide (Cr2O3) as an inert indicator. Nine test diets were formulated to contain RF and one of the feed ingredients (pollock meal [PM], jack mackerel meal [JMM], anchovy meal [AM], cod meal [CM], sardine meal [SM], sand eel meal [SEM], tuna meal [TM], meat meal [MM] and squid liver meal [SLM]) at a 7:3 ratio in each diet designated as PM, JMM, AM, CM, SM, SEM, TM, MM and SLM, respectively. Olive flounder, averaging 150 ± 8.0 g, were stocked at a density of 25 fish per tank in 400-L fiberglass tanks attached with fecal collection columns. Feces were collected from triplicate groups of fish one time a day for four weeks. Dry matter and crude protein ADCs of CM and SEM were significantly higher than the other tested ingredients. Lipid ADCs of JMM, CM and SEM were significantly higher than the other test ingredients. Energy ADCs of CM and SEM were significantly higher than that of the other tested ingredients. The availability of amino acids in CM was generally higher than the other animal protein sources. PM exhibited the lowest amino acid availability among the treatments. Interestingly, MM exhibited significantly higher nutrient digestibility than several marine-based ingredients. However, CM and SEM are seeming to be highly digestible and effective to use in olive flounder diet compared to the other tested ingredients. Overall, the results of this study provide information about the bioavailability of nutrients and energy in animal feedstuffs to apply when formulating cost-effective practical feeds for olive flounder.
Read full abstract