Human alveolar echinococcosis (AE) is a tumor-like disease predominantly located in the liver. The cellular composition and heterogeneity of the lesion-infiltrating lymphocytes which produce an "immunosuppressive" microenvironment are poorly understood. Here, we profiled 83,921 CD45+ lymphocytes isolated from the peripheral blood (PB), perilesion (PL), and adjacent normal (AN) liver tissue of four advanced-stage AE patients using single-cell RNA and T-cell receptor (TCR) sequencing technology. We identified 23 large clusters, and the distributions and transcriptomes of these cell clusters in the liver and periphery were different. The cellular proportions of exhausted CD8+ T cells and group 2 innate lymphoid cells (ILC2s) were notably higher in PL tissue, and the expression features of these cell subsets were related to neoplasm metastasis and immune response suppression. In the 5 CD8+ T-cell populations, only CD8+ mucosa-associated invariant T (MAIT) cells were enriched in PL samples and the TRAV1-2_TRAJ33_TRAC TCR was clonally expanded. In the 11 subsets of CD4+ T cells, Th17 cells and induced regulatory T cells (iTregs) were preferentially enriched in PL samples, and their highly expressed genes were related to cell invasion, tumor metastasis, and inhibition of the inflammatory immune response. Exhaustion-specific genes (TIGIT, PD-1, and CTLA4) were upregulated in Tregs. Interestingly, there was a close contact between CD8+ T cells and iTregs or Th17 cells, especially for genes related to immunosuppression, such as PDCD1-FAM3C, which were highly expressed in PL tissue. This transcriptional data set provides valuable insights and a rich resource for deeply understanding the immune microenvironment in AE, which could provide potential target signatures for AE diagnosis and immunotherapies.
Read full abstract