The polychaete worm Nereis diversicolor and the clam Scrobicularia plana were collected from several sites, affected by different types of contamination, in a littoral enclosure in the SW Spain (Caño Sancti-Petri and Rio San Pedro). N. diversicolor was present in 6 sampling sites whereas S. plana in 4 of them. The aim of our study was to relate several pollution biomarkers to chemical sources (metals and organic pollutants e.g. PCB, PAH) in these species, thereby confirming their adequacy as sentinels for this habitat. The biomarkers surveyed in the two invertebrates were the activities of the antioxidant enzyme catalase (CAT), the phase II detoxifying enzyme glutathione S-transferase (GST) and the neurotoxicity marker acetylcholinesterase (AChE). Metallothionein (MT) levels were measured as a biomarker of exposure to metals. The results suggested a different response in the two sediment-dwelling organisms, the sediment-eating polychaete and the water-filtering clam, probably as a consequence of different contamination exposures. The results also suggested that samples from the “Caño Sancti-Petri” were exposed to biologically active compounds that altered some of their biochemical responses. Of all the biomarkers tested, AChE was the most sensitive one and N. diversicolor the potentially most robust sentinel in this ecosystem. In this low to moderately polluted environment, the biochemical approach better reflected temporal trends than site-related differences although it was also able to detect punctual chemical insults.
Read full abstract