With the aim of improving the ionic and electronic conductivities of Li2ZnTi3O8 for high performance lithium ion battery applications, Li2Zn0.9M0.1Ti3O8 (M = Li+, Cu2+, Al3+, Ti4+, Nb5+, Mo6+) compounds are successfully fabricated using facile high temperature calcination at 800 °C. Physical characterization and lithium ion reversible storage demonstrate that Zn-site substitution by multivalent metal ions is beneficial for improving the migration rate of ions and electrons of Li2ZnTi3O8. X-ray diffraction analysis and scanning electron microscopy reveal that the crystal structure and microscopic morphology of bare Li2ZnTi3O8 do not change by introducing a small amount of foreign metal ions. As a result, Li2Zn0.9Nb0.1Ti3O8 retains a reversible capacity as high as 198 mA h g-1 at the end of the 500th cycle among all samples. Even when cycled at high temperatures, Li2Zn0.9Nb0.1Ti3O8 still maintains excellent reversible discharge capacities of 210 mA h g-1 and 196 mA h g-1 at 1000 mA g-1 for the 100th cycle at 50 °C and 60 °C, respectively. All the conclusions indicate that Li2Zn0.9Nb0.1Ti3O8 is a high-performance anode material for large-scale energy storage devices.
Read full abstract