Tropical biomass feedstock candidates, banagrass (Pennisetum purpureum×Pennisetum glaucum), guinea grass (Panicum maximum), energy cane (Saccharum spontaneum), and sugar cane (Saccharum officinarum L.) (as reference) were harvested and processed using pressing and leaching techniques to improve fuel properties for thermochemical conversion. Test results are reported that summarize the impacts of treatment methods on fuel properties and provide detailed data on mass and element partitioning between process streams to inform system design. The processed fuels had lower ash contents, improved heating values, higher ash deformation temperatures, and higher volatile matter to fixed carbon ratios than the parent materials. The liquid streams generated by the process were characterized for chemical oxygen demand, sugar content, total solids, total suspended solids, and major and trace elements. At least 20% of the initial fuel dry matter was partitioned to the byproduct liquid streams as total solids under the combined influences of leaching and mechanical processing. Analytical results support the land application of liquids as a nutrient recycling option. Element partitioning between solid and liquid process streams was determined and material and element mass balances were performed. Chemical equilibrium calculations based on the elemental composition of the parent materials and processed fuels and steam gasification conditions predicted substantial reductions in concentrations of K, Cl, S, Na, and Mg in the product gas.