Natural gas (NG) dehydration through absorption into Triethylene Glycol (TEG) is one of the most important applications in the NG industry. The optimal design of the TEG dehydration process requires a deep understanding of the thermodynamic behavior of mixtures containing TEG, water, hydrocarbons, and other compounds present in natural gas. In this work, the recently developed Universal Mixing Rule – Cubic Plus Association (UMR-CPA) group contribution equation of state (EoS) is extended to these systems. UMR-CPA combines the PR-CPA EoS with the UNIFAC group contribution activity coefficient model through the Universal Mixing Rules. Parameters for pure water, TEG and NG components were determined by accurately fitting vapor pressure, density and heat capacity data. For non-associating compounds, the model leads to overall deviations of 1.2 % in vapor pressures and 6.1 % in isobaric heat capacities. Water properties are also quite accurately described, with overall deviations of approximately 0.4 %, 1.2 % and 5.7 % in vapor pressures, liquid densities and isobaric heat capacities, respectively. The model was then applied to mixtures of water and TEG with gases and hydrocarbons by correlating the proper group interaction parameters. Very satisfactory results were obtained for both vapor-liquid and liquid-liquid phase equilibria in these systems, where also an adequate reproduction of the minimum of hydrocarbon solubility in water was noted. Finally, the UMR-CPA EoS was further validated through the prediction of the phase behavior of ternary systems including TEG and/or water and NG compounds. Very good predictions were achieved for the low TEG and water content in the vapor phase of the TEG-H2O-CH4 ternary system, with absolute deviations of around 0.05 and 23.26 ppm, respectively. Overall, the model yields accurate predictions, suggesting its suitability for designing the TEG dehydration process.