Primary biliary cirrhosis (PBC) is a human autoimmune liver disease whose molecular pathogenesis is poorly understood because of the difficulty in accessing human tissue and the absence of appropriate animal models. Recently, several unique murine models of human PBC have been discovered. These models have great potential for illustrating the cause and the cellular events that lead to biliary-specific damage. The purpose of this review is to summarize recent progress in these models. The murine models of autoimmune cholangitis include the transforming growth factor beta receptor II (TGF-betaRII) dominant-negative (dnTGF-betaRII), IL-2 receptor alpha deleted (IL-2Ralpha-/-), scurfy, nonobese diabetic (NOD) c3c4, and Ae2 gene-disrupted (Ae2a,b-/-) mice. Recently, we have also established a successful murine model following the immunization with a chemical mimicry of the lipoyl-lysine residue of the E2 component of PDC-E2. These emerging murine models have greatly enabled researchers to address the pathogenesis of human PBC and to elucidate pathogenic factors. These models will ultimately lead to new therapeutic options for human PBC.
Read full abstract