Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.
Read full abstract