Proanthocyanidins (PACs) are complex flavan-3-ol polymers with stunning chemical complexity due to oxygenation patterns, oxidative phenolic ring linkages, and intricate stereochemistry of their heterocycles and inter-flavan linkages. Being promising candidates for dental restorative biomaterials, trace analysis of dentin bioactive cinnamon PACs now yielded novel trimeric (1 and 2) and tetrameric (3) PACs with unprecedented o- and p-benzoquinone motifs (benzoquinonoid PACs). Challenges in structural characterization, especially their absolute configuration, prompted the development of a new synthetic-analytical approach involving comprehensive spectroscopy, including NMR with quantum mechanics-driven 1H iterative functionalized spin analysis (HifSA) plus experimental and computational electronic circular dichroism (ECD). Vital stereochemical information was garnered from synthesizing 4-(2,5-benzoquinone)flavan-3-ols and a truncated analogue of trimer 2 as ECD models. Discovery of the first natural benzoquinonoid PACs provides new evidence to the experimentally elusive PAC biosynthesis as their formation requires two oxidative post-oligomerizational modifications (POMs) that are distinct and occur downstream from both quinone-methide-driven oligomerization and A-type linkage formation. While Nature is known to achieve structural diversity of many major compound classes by POMs, this is the first indication of PACs also following this common theme.