We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.
Read full abstract