<abstract> <p>Functionally graded materials are well-known for their ability to minimize abrupt stress transitions that are typical of laminated composites, as well as for being very suitable to operate in adverse high-temperature environments. They can act as thermal barriers if a proper selection of the constituent materials is considered. These materials and structures have attracted the attention of many researchers; however, previous research efforts have been focused on the systematic study of rectangular-shaped cross-section profiles. The use of beams characterized by other cross-sections, which are commonly used in metallic construction, may benefit from the continuous, smooth materials mixture that is typically found within functionally graded composites. Hence, this work aims to investigate the behavior of symmetrical, I-shaped, cross-section beams made from these advanced composites by performing a set of parametric analyses. These beams are modeled after solid finite elements to be able to describe the materials mixture evolution through the beam thickness with greater detail. Thick and moderately thick beams are submitted to static loading while considering different boundary conditions, and their linear static behavior is analyzed. As expected, the stress profiles are highly influenced by the materials' mixture profiles. Significant shear stress was found in the I-shaped cross sections.</p> </abstract>