The power conversion efficiency (PCE) of organic solar cells (OSCs) devices has surpassed 19% owing to the blooming of fused-ring nonfullerene acceptors (NFAs), especially for acceptor-donor-acceptor (A-D-A) type NFAs. However, the structural effect of the angular/linear fusion mode and number of fused rings for A-D-A type NFAs on the photovoltaic performance in OSCs devices remains unclear. Herein, the A-D-A type NFAs (F-0Cl, IDIC8-H, and ITIC) have been selected to obtain the intrinsic role of structural design strategies including the angular/linear fusion mode and the number of fused rings. The results indicate that compared to the linear fusion mode in ITIC, the angular fusion mode in F-0Cl effectively diminishes electronic vibrational coupling within the low-frequency range, leading to lower charge reorganization during the exciton diffusion process. Meanwhile, it facilitates the generation of multiple charge transfer mechanisms at the donor/acceptor (D/A) interface and increases the rates of hole transfer. On the other hand, the decreased number of fused rings of NFAs could inhibit the exciton decay and charge recombination but increase the rates of exciton diffusion and exciton dissociation for individual NFAs and the rates of electron separation for D/A interface. This work provides theoretical insights into structural design strategies, such as linear/angular fusion, and the number of fused rings of NFA, which presents a promising outlook for further enhancing PCE of high-performance A-D-A type NFAs.
Read full abstract