In this study, we present the synthesis of gold nanoparticles (AuNPs) using a completely green synthesis method without the use of any additional functionalizing agent, except dried turmeric root extract. The significant synthesis parameters were optimized, and the applicability of AuNPs was investigated in areas such as plasmonic and fluorescent sensing of aluminum (Al3⁺) and chromium (Cr3⁺) ions, reduction of 4-nitrophenol (4-NP), and degradation of methylene blue (MB) and methyl orange (MO) dyes. Characterization studies were performed using UV-Vis spectroscopy, TEM, FTIR, and XRD, revealing that the AuNPs predominantly had a spherical morphology and a very small particle size of 8.5 nm, with stability maintained up to 120 days. The developed AuNP-based plasmonic sensors relied on aggregation-induced decreases in absorption, along with a red shift in the spectra. Fluorescence sensing demonstrated a linear increase in intensity with increasing concentrations of Al3⁺ and Cr3⁺, with detection limits of 0.83 and 1.19 nM, respectively. The catalytic activities of AuNPs were tested in reducing 4-NP and degradations of MB and MO dyes (binary system) in tap water and wastewater, with the reactions following pseudo-first-order kinetics. This study highlights the potential of AuNPs synthesized from turmeric roots for various environmental and sensing applications.
Read full abstract