<p>The article deals with the problem of constructing a polyhedral approximation of the 0-controllable sets of a linear discrete-time system with linear control constraints. To carry out the approximation, it is proposed to use two heuristic algorithms aimed at reducing the number of vertices of an arbitrary polyhedron while maintaining the accuracy of the description in the sense of the Hausdorff distance. The reduction of the problem of calculating the distance between nested polyhedra to the problem of convex programming is demonstrated. The issues of optimality of obtained approximations are investigated. Examples are given.</p>