This article reports the results of our investigations on electronic and transport properties of zinc blende gallium antimonide (zb-GaSb). Our ab-initio, self-consistent and non-relativistic calculations used a local density approximation potential (LDA) and the linear combination of atomic orbital formalism (LCAO). We have succeeded in performing a generalized minimization of the energy, using the Bagayoko, Zhao and Williams (BZW) method, to reach the ground state of the material while avoiding over-complete basis sets. Consequently, our results have the full physical content of density functional theory (DFT) and agree with available, corresponding experimental data. Using an experimental room temperature lattice constant of 6.09593?, we obtained a direct band gap of 0.751 eV, in good agreement with room temperature measurements. Our results reproduced the experimental locations of the peaks in the total density of valence states as well as the measured electron and hole effective masses. Hence, this work points to the capability of ab-initio DFT calculations to inform and to guide the design and the fabrication of semiconductor based devices—provided a generalized minimization of the energy is performed.