In the current work, we consider particle trajectories beneath traveling soliton solutions described by the Kadomtsev–Petiviashvili-II (KP-II) equation, which is a model for small-amplitude water waves in shallow water. The KP-II equation has a large number of exact solutions describing crossing line solitons. Here, we describe the particle drift induced by the single line soliton and various two- and three-soliton solutions on a two-dimensional horizontal domain.First, the derivation of the KP-II equation is used to exhibit expressions for the three components of the fluid velocity vector induced by a surface wave profile given by the KP-II equation. These velocity components can be used to specify a coupled system of ordinary differential equations (ODEs) which describe the motion of a fluid particle. Given an initial position inside the fluid for a specific particle, as well as continuously providing time-dependent values for the surface deflection, the ODE system can be solved numerically to find the particle path induced by the passage of a wave. A special numerical integration grid tracking the particle is used to handle integral terms occurring in the fluid velocity expressions.
Read full abstract