Large-diameter thick-walled steel pipes during their installation in deep-water are subjected to external pressure, which may trigger structural instability due to pipe ovalization, with detrimental effects. The resistance of offshore pipes against this instability is affected by local geometric deviations and residual stresses, introduced by the line pipe manufacturing process. In the present paper, the JCO-E pipe manufacturing process, a commonly adopted process for producing large-diameter pipes of significant thickness, is examined. The study examines the effect of JCO-E line pipe manufacturing process on the external pressure resistance of offshore pipes, candidates for deepwater applications using nonlinear finite element simulation tools. The cold bending induced by the JCO forming process as well as the subsequent welding and expansion (E) operations are simulated rigorously. Subsequently, the application of external pressure is modeled until structural instability (collapse) is detected. Both the JCO-E manufacturing process and the external pressure response of the pipe, are modeled using a two-dimensional (2D) generalized plane strain model, together with a coupled thermo-mechanical model for simulating the welding process.
Read full abstract