The global cultivation area of rice is equivalent to 4% of the world’s forest area and may be an important sink and source of trace gases. To produce a precise terpenoid emission inventory, it is essential to obtain reliable data of terpenoid emission from rice plants. In the present study, terpenoid emissions from various rice species were measured using flow-through chamber and tower flux measurement methods. In the flow-through chamber measurement, linalool was emitted from the above-ground parts of the three rice cultivars “Koshihikari”, “Nipponbare” and “IR72”. The emission rates gradually decreased (<0.1 µg gDW−1 h−1) within two days during the measurement periods. As the touching stimulus might have enhanced linalool emission, a non-contact measurement method, i.e., the tower flux measurement method, was applied to a “Koshihikari” paddy. Linalool was not detected, but α-pinene was detected in the atmosphere above the rice paddy. The α-pinene flux (mean ± 95% confidence interval) was 0.006 ± 0.004 nmol m−2 s−1 on a land-area basis. The flux was 1/200 of the previously reported monoterpene emission rate of the rice plants measured in a commercial chamber, but was not largely different from three other reports. We provide terpenoid flux data above a rice paddy for the first time, which is more reliable because the tower flux measurement method can avoid stimuli to rice leaves and stems. Although the obtained terpenoid emission rate is very low, the obtained values can contribute to the establishment of a precise BVOC inventory in Asia.