Bone graft granules are valuable tools for ridge area bone grafting owing to their ease of manipulation and interconnected porous structure. Guided bone regeneration (GBR) using barrier membranes is commonly used for alveolar ridge augmentation; however, the surgical procedures are technically complicated. In this study, we fabricated bioresorbable mesh domes (BMDs) using two types of Vicryl mesh (woven and knitted types) containing carbonate apatite granules. BMD samples were prepared in three groups: upper sides made from the woven type (UW) and lower sides made from the woven type (LW) (the UW/LW group), upper sides made from the woven type (UW) and lower sides made from the knitted type (LK) (the UW/LK group), and upper sides made from the knitted type (UK) and lower sides made from the knitted type (LK) (the UK/LK group). The samples were subsequently implanted into rabbit calvaria, and radiomorphometric and histological analyses were conducted. The UK/LK group exhibited enhanced appositional bone formation because the knitted mesh on the skin side prevented the infiltration of a substantial amount of fibrous tissue. This increase in bone formation could be attributed to the interaction between granules and osteoprogenitors that pass through the mesh from the host bone. Conversely, the UW/LW and UW/LK groups presented limited appositional bone formation. Compared with knitted mesh, woven mesh might tend to be absorbed over a short span, allowing fibrous tissue invasion and inhibiting new bone formation. Additionally, BMDs could retain granules in a targeted location and avoid displacement of the granules to unintended locations.Graphical
Read full abstract