Nitrogen is often a limiting nutrient for microbial communities and plants in glacier forefields. Nitrogen-fixing microorganisms (diazotrophs) play an important role in providing bioavailable nitrogen, with their composition determining the nitrogen-fixating capacities. This study investigates the spatial and temporal dynamics of diazotrophs in the forefields of three Tibetan glaciers: Qiangyong, Kuoqionggangri, and Longxiazailongba. We collected soil samples from recently deglaciated barren grounds, and also along an ecosystem succession transect at Kuoqionggangri glacier, encompassing barren ground, herb steppe, legume steppe, and alpine meadow ecosystems. Our finding revealed abundant and diverse diazotrophs in the recently deglaciated barren ground. They are taxonomically affiliated with anaerobic Bradyrhizobium, Desulfobulbus, and Pelobacter, which may be relics from subglacial sediments. The vegetated soils (herb steppe, legume steppe, and alpine meadow) were dominated by phototrophic Nostoc and Anabaena, as well as symbiotic Sinorhizobium. Soil physicochemical parameters, such as soil organic carbon, pH, and nitrate ion, significantly influenced diazotroph community structure. This study highlights the critical role of diazotrophs in mitigating nitrogen limitation during early ecosystem development in glacier forefields. Understanding the distribution and ecological drivers of diazotrophs in these rapidly changing environments provides insights into biogeochemical cycling and ecosystem resilience under climate change.
Read full abstract