During the evolution towards digital agriculture, the pivotal role of tractor riding necessitates a focus on improving operator performance and well-being. While most research has centered around vibration analysis, tangible solutions to control elevated vibration levels remain rare. The study aims to introduce an intelligent ThingSpeak-Enabled IoT (Internet of Things) solution that provides real-time monitoring and generates prompt warning alerts for tractor operators when vibrations exceed safe thresholds. The initial phase involved the real-time measurement of WBV (whole-body vibration) and SEAT (seat effective amplitude transmissibility). Following this, the secondary phase encompassed the analysis and validation of the system in cases where WBV and SEAT exceeded the recommended limits. The experimental design comprised 135 trials by systematically varying tractor ride parameters, including average speed (m/s), average depth (m), and pulling force (kN) levels. Daily vibration exposure response ranged from 0.43 m/s² to 0.87 m/s² with a mean exposure of 0.64 m/s2, surpassing the EAV (exposure action value) threshold of 0.5 m/s². The SEAT values ranged between 91.37 and 133.08 with a mean of 108.35, that indicates insufficient seat isolation capacity, i.e., < 100. Statistically, the study ascertained a significant influence of average speed and average depth WBV and SEAT responses at a 5% significance level. It underscores the potential efficacy of altering speed and depth parameters to attenuate vibration exposure levels. Further, the effectiveness of the system was tested through the automatic transmission of warning alerts via emails, text messages, and flashing red LED light on the IoT system. This critical feature provides considerable utility for tractor operators to adjust ride settings, ensuring that the ride remains within safe vibration limits. Furthermore, adopting such an advanced warning system in tractor manufacturing signifies a pioneering step towards sustainably enhancing operator well-being.
Read full abstract