Reactive aggression in response to perceived threat or provocation is part of humans' adaptive behavioral repertoire. However, high levels of aggression can lead to the violation of social and legal norms. Understanding brain function in individuals with high levels of aggression as they process anger- and aggression-eliciting stimuli is critical for refining explanatory models of aggression and thereby improving interventions. Three neurobiological models of reactive aggression – the limbic hyperactivity, prefrontal hypoactivity, and dysregulated limbic-prefrontal connectivity models – have been proposed. However, these models are based on neuroimaging studies involving mainly non-aggressive individuals, leaving it unclear which model best describes brain function in those with a history of aggression.We conducted a systematic literature search (PubMed and Psycinfo) and Multilevel Kernel Density meta-analysis (MKDA) of nine functional magnetic resonance imaging (fMRI) studies (eight included in the between-group analysis [i.e., aggression vs. control groups], five in the within-group analysis). Studies examined brain responses to tasks putatively eliciting anger and aggression in individuals with a history of aggression alone and relative to controls.Individuals with a history of aggression exhibited greater activity in the superior temporal gyrus and in regions comprising the cognitive control and default mode networks (right posterior cingulate cortex, precentral gyrus, precuneus, right inferior frontal gyrus) during reactive aggression relative to baseline conditions. Compared to controls, individuals with a history of aggression exhibited increased activity in limbic regions (left hippocampus, left amygdala, left parahippocampal gyrus) and temporal regions (superior, middle, inferior temporal gyrus), and reduced activity in occipital regions (left occipital cortex, left calcarine cortex).These findings lend support to the limbic hyperactivity model in individuals with a history of aggression, and further indicate altered temporal and occipital activity in anger- and aggression-eliciting conditions involving face and speech processing.
Read full abstract