Carrying side loads often occurs during activities of daily living. As walking is most unstable mediolaterally, side load carriage may further compromise gait biomechanics, especially for transtibial amputees (TTAs). This study investigated the effects of side load carriage on gait kinetics during steady-state walking to determine which side, intact or prosthetic, TTAs should carry a load. Twelve unilateral TTAs wore a passive-elastic foot and carried a side load of 13.6 kg while walking at their self-selected speed. Kinetic metrics, including ground reaction force peaks and impulses, loading and unloading rates, and joint moments and powers, were analyzed. TTAs had smaller propulsive forces on their intact limb during the prosthetic side load condition. During the intact side load condition, they exhibited smaller hip flexor moment in late stance and smaller knee flexor moment at the end of swing on their intact limb. They had higher hip and knee abductor moments on their intact limb and prosthetic limb in early and late stance during the contralateral side load condition. TTAs generated higher hip extensor power at weight acceptance during the ipsilateral side load. Significant interactions were observed in hip extensor power and abductor moment, suggesting strong associations between hip extensor power generation and the ipsilateral side load and between hip abductor moment and the contralateral side load. These mixed results demonstrate some kinetic changes due to side load carriage and suggest that the side TTAs should carry a load depends on the desired effects, primarily on their intact limb.