The investigation of univalent functions is one of the fundamental ideas of Geometric function theory (GFT). However, the class of these functions cannot be investigated as a whole for some particular kind of problems. As a result, the study of its subclasses has been receiving numerous attentions. In this direction, subfamilies of the class of univalent functions that map the open unit disc onto the domain bounded by limacon of Pascal were recently introduced in the literature. Due to the several applications of this domain in Mathematics, Statistics (hypothesis testing problem) and Engineering (rotary fluid processing machines such as pumps, compressors, motors and engines.), continuous investigation of these classes are of interest in this article. To this end, the family of functions for which $ \frac{\varsigma f^{\prime}(\varsigma)}{f(\varsigma)} $ and $ \frac{(\varsigma f^{\prime}(\varsigma))^{\prime}}{f^{\prime}(\varsigma)} $ map open unit disc onto region bounded by limacon are studied. Coefficients bounds, Fekete Szeg $ \ddot{ \rm{o}} $ inequalities and the bounds of the third Hankel determinants are derived. Furthermore, the sharp radius for which the classes are linked to each other and to the notable subclasses of univalent functions are found. Finally, the idea of subordination is utilized to obtain some results for functions belonging to these classes.