The occurrence of a router outage in the IP layer can lead to network survivability issues in IP-over-elastic-optical networks with consequent effects on the existing connections used in transiting the router. This usually leads to the application of a path to recover any affected traffic by utilizing the spare capacity of the unaffected lightpath on each link. However, the spare capacity in some links is sometimes insufficient and thus needs to be spectrally expanded. A new lightpath is also sometimes required when it is impossible to implement the first process. It is important to note that both processes normally lead to a large number of lightpath reconfigurations when applied to different unaffected lightpaths. Therefore, this study proposes an adaptive routing strategy to generate the best path with the ability to optimize the use of unaffected lightpaths to perform reconfiguration and minimize the addition of free spectrum during the expansion process. The reactive defragmentation strategy is also applied when it is impossible to apply spectrum expansion because of the obstruction of the neighboring spectrum. This proposed strategy is called lightpath reconfiguration and spectrum expansion with reactive defragmentation (LRSE+RD), and its performance was compared to the first Shortest Path (1SP) as the benchmark without a reactive defragmentation strategy. The simulation conducted for the two topologies with two traffic conditions showed that LRSE+RD succeeded in reducing the lightpath reconfigurations, new lightpath number, and additional power consumption, including the additional operational expense compared to 1SP.
Read full abstract