Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity. In this study, a dynamic monitoring system based on ion-sensitive membranes for light-addressable potentiometric sensor (LAPS) was developed to meet the demand for monitoring changes in extracellular calcium ion (Ca2+) concentration in live cells. The effects of Ca2+ channel agonists and blockers on 2D and 3D HL-1 cells were investigated, with changes in extracellular Ca2+ concentration reflecting cellular calcium metabolism, facilitating drug evaluation. Additionally, calcium imaging technology with optical addressing capability complemented the LAPS system's ability to perceive 3D cell morphology, enhancing its drug evaluation capabilities. This work provides a novel, label-free, specific, and stable technique for monitoring cellular calcium metabolism. It achieves both continuous monitoring at single points and custom sensing area calcium imaging, holding significant implications for drug screening and disease treatment related to human calcium homeostasis.
Read full abstract