Clitoria ternatea L. (CT) is a perennial herbaceous plant with deep blue flowers native to tropical Asia. This work explores the endometrial pain (EP) regulation of CT flower through a multifaceted approach. Phytochemical screening unveiled the presence of alkaloids, steroids, flavonoids, glycosides, and tannins in CT flower methanolic extract (ME). In the in vitro membrane stabilizing experiment, the ME demonstrated 91.47% suppression of heat-induced hemolysis. Upon carrageenan-induced paw edema assay conducted on male Swiss albino mice at doses of 200 mg/kg and 400 mg/kg, 65.28% and 81.89% inhibition rates, respectively, of paw edema were reported. For the same doses, upon acetic acid-induced-writhing assay, 75.6% and 76.78% inhibition rates, respectively, were observed. For network pharmacology analyses, a protein-protein interaction network was constructed for 92 overlapping gene targets of CT and EP, followed by GO and KEGG pathway enrichment analyses. Network pharmacology-based investigation identified the anti-EP activity of CT to be mostly regulated by the proteins SRC homology, ESR1, and PI3KR1. Physicochemical, pharmacokinetic, and toxicity property predictions for the compounds with stable ligand-target interactions and a molecular dynamics simulation for the highest interacting complex further validated these findings. This work affirmed the anti-EP role of CT flower against EP, suggesting a probable molecular mechanism involved.
Read full abstract