The electric vertical take-off and landing (eVTOL) aircraft offers the advantages of vertical take-off and landing, environmental cleanliness, and automated control, making it a crucial component of future urban air traffic. As competition intensifies, demands for aircraft performance are escalating, including forward flight speed and payload capacity. The article presents a novel eVTOL design with propulsive wings and establishes methodologies for propulsive wing unsteady numerical simulation and wind tunnel experiments, analyzing its aerodynamic characteristics and lift enhancement mechanism. The results indicate that the cross-flow fan (CFF) provides unique airflow control capabilities, enabling the propulsive wing to achieve remarkably high lift coefficients (exceeding 7.6 in experiments) and propulsion coefficients (exceeding 7.1 in experiments) at extreme angles of attack (30°~40°) and low airspeeds. On the one hand, the CFF effectively controls boundary layer flow, delaying airflow separation at high angles of attack; on the other hand, the rotation of the CFF induces two eccentric vortices, generating vortex-induced lift and propulsion. The aerodynamic performance of the propulsive wing depends on the advance ratio and angle of attack. Typically, both lift and propulsion coefficients increase with the advance ratio, while lift and drag coefficients increase with the angle of attack. The propulsive wing shows significant advantages and prospects for eVTOL aircrafts in the low flight velocity range (0–30 m/s).
Read full abstract