Disasters experienced by an entire community provide opportunities to understand individual differences in risk for adverse health outcomes over time. DNA methylation (DNAm) differences may help to distinguish individuals at increased risk following large-scale disasters. To examine the association of epigenetic age acceleration with probable posttraumatic stress disorder (PTSD) and PTSD symptom severity in women. This prospective cohort study examined data from participants in the Women and Their Children's Health cohort, who were characterized longitudinally following the Deepwater Horizon oil spill (DHOS) in 2010 and through numerous hurricanes in the Gulf Coast region of the US. Wave 1 occurred August 6, 2012, through June 26, 2014, and wave 2 occurred September 2, 2014, through May 27, 2016. Data were analyzed between August 18 and November 4, 2023. Address-based sampling was used to recruit women aged 18 to 80 years and residing in 1 of the 7 Louisiana parishes surrounding the DHOS-affected region. Recruitment consisted of 2-stage sampling that (1) undersampled the 2 more urban parishes to maximize probability of participant oil exposure and (2) proportionally recruited participants across census tracts in the 5 other parishes closest to the spill. Posttraumatic stress subsequent to the DHOS. Epigenetic age acceleration was measured by DNAm assayed from survey wave 1 blood samples. Posttraumatic stress disorder was assessed using the PTSD Checklist for DSM-5 at survey wave 2, and lifetime trauma exposure was assessed using the Life Events Checklist for DSM-5. General linear models were used to examine the association between wave 1 DNAm age and wave 2 probable PTSD diagnosis and symptom severity. A total of 864 women (mean [SD] age, 47.1 [12.0] years; 328 Black [38.0%], 19 American Indian [2.2%], 486 White [56.3%], and 30 of other racial groups, including uknown or unreported [3.5%]) were included. Black and American Indian participants had a higher age acceleration at wave 1 compared with White participants (β = 1.64 [95% CI, 1.02-2.45] and 2.34 [95% CI, 0.33-4.34], respectively), and they had higher PTSD symptom severity at wave 2 (β = 7.10 [95% CI, 4.62-9.58] and 13.08 [95% CI, 4.97-21.18], respectively). Epigenetic age acceleration at wave 1 was associated with PTSD symptom severity at wave 2 after adjusting for race, smoking, body mass index, and household income (β = 0.38; 95% CI, 0.11-0.65). In this cohort study, epigenetic age acceleration was higher in minoritized racial groups and associated with future PTSD diagnosis and severity. These findings support the need for psychoeducation about traumatic responses to increase the likelihood that treatment is sought before years of distress and entrenchment of symptoms and comorbidities occur.
Read full abstract