Motivated by super Poisson–Lie (PL) symmetry of the Wess–Zumino–Witten (WZW) model based on the (C3+A)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(C^3+A)$$\\end{document} Lie supergroup of our previous work (Eghbali et al., in J High Energy Phys 07:134, 2013. arXiv:1303.4069 [hep-th]), we first obtain and classify all Drinfeld superdoubles (DSDs) generated by the Lie superbialgebra structures on the (C3+A)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathscr {C}}^3+ {\\mathscr {A}})$$\\end{document} Lie superalgebra as a theorem. Then, introducing a general formulation we find the conditions under which a two-dimensional σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sigma $$\\end{document}-model may be equivalent to a WZW model. With the help of this formulation and starting the super PL symmetric (C3+A)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(C^3+A)$$\\end{document} WZW model, we get a hierarchy of WZW models related to super PL T-duality, in such a way that it is different from the super PL T-plurality, because the DSDs are, in this process, non-isomorphic. The most interesting indication of this work is that the (C3+A)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(C^3+A)$$\\end{document} WZW model does remain invariant under the super PL T-duality transformation, that is, the model is super PL self-dual.
Read full abstract