The accumulation of 55 elements in lichens under the heap of a former nickel smelter (village Dolná Streda, Slovakia) and at eight sites at different distances from the heap plus six sites throughout Slovakia was studied to determine the elemental profile. The major metals in the heap sludge and in the lichens below the heap (Ni, Cr, Fe, Mn, and Co) were surprisingly low in lichens from both the near and far vicinity of the heap (4–25 km), indicating limited airborne spread. However, two different sites with metallurgical activity (another site near the ferroalloy producer in Orava) typically contained the highest amount of individual elements, including rare earth elements, Th, U, Ag, Pd, Bi and Be, and their separation from other sites was confirmed by PCA and HCA analyses. In addition, the amounts of Cd, Ba and Re were highest at sites without a clear source of pollution and further monitoring is needed. It was also an unexpected finding that the enrichment factor calculated using UCC values was increased (often considerably >10) for 12 elements at all 15 sites, indicating eventual anthropogenic contamination with P, Zn, B, As, Sb, Cd, Ag, Bi, Pd, Pt, Te and Re (and other EF values were locally increased). Metabolic analyses showed a negative correlation between some metals and metabolites (ascorbic acid, thiols, phenols and allantoin), but slightly positive (amino acids) or highly positive correlation with purine derivatives hypoxanthine and xanthine. The data suggest that lichens adapt their metabolism to excessive metal loading and that epiphytic lichens are suitable for identifying metal contamination even at apparently clean sites.
Read full abstract