Accurate, reliable and standardized quantification of anti-protective antigen (PA) IgG antibody levels is essential for comparative analyses of anti-toxin immune responses in anthrax cases, recipients of PA-based anthrax vaccines and for evaluation of anti-PA based immunotherapies. We have previously reported the early performance characteristics and application of a quantitative anti-PA IgG enzyme linked immunosorbent assay. The principal application of this assay was in a Phase 4 human clinical trial of anthrax vaccine adsorbed (AVA, BioThrax), the central component of the CDC Anthrax Vaccine Research Program (AVRP) and in humans following bioterrorism associated Bacillus anthracis infection (Quinn et al., 2002; Quinn et al., 2004; Marano et al., 2008). The objective of the AVRP was to determine the feasibility of reducing the number of priming series and booster doses of the licensed Anthrax Vaccine Adsorbed (AVA) (BioThrax®; Emergent BioSolutions, Lansing, MI) and changing the route of administration from subcutaneous (SC) to intramuscular (IM) (Marano et al., 2008). In this paper we report the validation and long term performance characteristics of the assay during its six year application in the AVRP (2002–2008). The critical features are 1) extensive validation of the assay using two standard reference sera; 2) long term stability and 3) consistency of the data for quantitative analysis of human long term anti-PA IgG responses. The reportable value (RV) of the assay was expressed as anti-PA IgG concentration (μg/ml). Accuracy of the assay was high with a percent error (%ER) range of 1.6–11.4%. Overall intra-operator and intermediate precision were high with Coefficients of Variation (%CVs) of 2.5–15.4% and 6.3–13.2%, respectively. The assay demonstrated excellent dilutional linearity for human sera using log10 transformed data with the slope=0.95 to 0.99, intercept=0.02 to 0.06 and r2=0.980–0.987. The assay was robust, tolerating changes in serum incubation temperatures from 35 to 39°C, serum incubation times from 55 to 65min and changes in key reagents. The long-term assay stability over 6years using consecutive reference sera AVR414 and AVR801 demonstrated sustained high accuracy and precision for the assay, confirming its suitability for long term studies of PA protein-based anthrax vaccines.
Read full abstract