In this project, we synthesized TiO2 compounds through the molten salt method (MSM) using Ti(IV) oxysulfate, as the Ti source. Molten salts in the ratio of 0.375 M LiNO3:0.180 M NaNO3:0.445 M KNO3 were added and heated at temperatures of 145, 280, 380, and 480 °C for 2 h in air, respectively. A part of the sample prepared at 145 °C was further reheated to 850 °C for 2 h in air. X-ray diffraction studies showed that the amorphous phase was obtained when the sample was prepared at 145 °C, and polycrystalline to crystalline anatase phase was formed when heated from 280 to 850 °C, which is complementary to the results of selected area electron diffraction studies. Electrochemical properties were studied using galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy at a current density of 33 mA g−1 (0.1 C rate) and a scan rate of 0.058 mV s−1, in the voltage range 1.0–2.8 V vs. Li. Electrochemical cycling profiles for the amorphous TiO2 samples prepared at 145 °C showed single-phase reaction with a low reversible capacity of 65 mAh g−1, whereas compounds prepared at 280 °C and above showed a two-phase reaction of Li-poor and Li-rich regions with a reversible capacity of 200 mAh g−1. TiO2 produced at 280 °C showed the lowest capacity fading and the lowest impedance value among the investigated samples.
Read full abstract