Slags generated from pyrometallurgical processing of spent Li-ion batteries are reservoirs of Li compounds that, on recycling, can reintegrate Li into the material stream. In this context, γ-LiAlO2 is a promising candidate that potentially increases recycling efficiency due to its high Li content and favorable morphology for separation. However, its solidification kinetics depends on melt compositions and cooling strategies. The Engineered Artificial Minerals approach aims to optimize process conditions that maximize the desired solid phases. To realize this goal, understanding the coupled influence of external cooling kinetics and internal kinetics of solid/liquid interface migration and mass and thermal diffusion on solidification is critical. In this work, the solidification of γ-LiAlO2 from a Li2O-Al2O3 melt is computationally investigated by applying a non-equilibrium thermodynamic model to understand the influence of varying processing conditions on crystallization kinetics. A strategy is illustrated that allows the effective utilization of thermodynamic information obtained by the CALPHAD approach and molecular dynamics-generated diffusion coefficients to simulate kinetic-dependent solidification. Model calculations revealed that melts with compositions close to γ-LiAlO2 remain comparatively unaffected by the external heat extraction strategies due to rapid internal kinetic processes. Kinetic limitations, especially diffusion, become significant for high cooling rates as the melt composition deviates from the stoichiometric compound.
Read full abstract