The composition of photosynthetic apparatus of Rhodobacter sphaeroides wild strain 2.4.1 and its LHII-deficient mutant DBCΩ was compared. The absence of LHII in the mutant was confirmed by comparison of chromatophores spectra and by the absence of electrophoretic band corresponding to LHII complex. Continuous turbidostat cultures of wild strain and its LHII-deficient mutant were compared in response to different light intensities. Cultures were grown using lactate, mixture of lactate and acetate or succinate as carbon source. For comparative analysis, an approximation of experimental data by Monod and Gompertz equations were used. Cultures of DBCΩ had lower growth rates than wild strain when grown on lactate as electron donor and carbon source. Cultures of both strains grown on lactate and acetate or on succinate had similar growth rates. The cultures showed maximum growth rates when grown with succinate. Bacteriochlorophyll a content increased in both strains with decrease of incident light intensity. However, the variation of Bchl a content in wild strain was much more significant. Under light-limiting conditions, bacteriochlorophyll a content in DBCΩ was 4-5 times lower than in the wild strain. Under light-saturating conditions, it was only 1.5-2.5 times lower. Growing with lactate or with lactate and acetate, the mutant switched from light limitation under low light intensities to limitation by organic acids under higher light, whereas the parental strain had similar switch of limiting factor only when growing with lactate and acetate mixture. DBCΩ mutant has higher minimal light intensity enabling growth on any organic acid as a substrate. When growing with lactate or with lactate and acetate, the mutant reached maximum growth rate at lower light intensities than the wild strain. This phenomenon was observed for the first time. Taking into account the concentration of BChl a under light-limiting conditions, the thickness of the suspension capable of effective light absorption could be increased by 4-5 times, which is favorable for intensive cultivation.
Read full abstract