The use of nanocatalytic particles for the removal of refractory organics from wastewater is a rapidly growing area of environmental purification. However, little has been done to investigate the effects of nanoparticles on soil-plant systems with antibiotic contamination. This work assessed the effect of molybdenum disulfide (MoS2) on the soil-Phragmites communis system containing levofloxacin (LVX). The results showed that the addition of MoS2 had restoration potential for stressed plant. The MoS2 with catalytic activity promoted the transformation of LVX in rhizosphere soils. The transformation pathways of LVX in the different exposure groups were proposed. The continuous output of radicals in the high MoS2 dosage group facilitated the transformation of LVX to small molecule compounds, which were eventually mineralized. Moreover, the electron-density-difference analysis revealed the easier flow of electrons from the MoS2 surface towards the LVX molecules. This finding provides theoretical support for the application of nanocatalytic particles in ecological environments.
Read full abstract