Microeukaryotes are key for predicting the change of ecosystem processes in the face of a disturbance. However, their vertical responses to multiple interconnected factors caused by water mixing remain unknown. Here, we conducted a 12-month high-frequency study to compare the impacts of mixing disturbances on microeukaryotic community structure and stability over different depths in a stratified reservoir. We demonstrate that core and satellite microeukaryotic compositions and interactions in surface waters were not resistant to water mixing, but significantly recovered. This was because the water temperature rebounded to the pre-mixing level. Core microeukaryotes maintained community stability in surface waters with high recovery capacity after water mixing. In contrast, the changes in water temperature, chlorophyll-a, and nutrients resulted in steep and prolonged variations in the bottom core and satellite microeukaryotic compositions and interactions. Under low environmental fluctuation, the recovery of microbial communities did not affect nutrient cycling in surface waters. Under high environmental fluctuation, core and satellite microeukaryotic compositions in bottom waters were significantly correlated with the multi-nutrient cycling index. Our findings shed light on different mechanisms of plankton community resilience in reservoir ecosystems to a major disturbance over depths, highlighting the role of bottom microeukaryotes in nutrient cycling.
Read full abstract