Surface sediments were collected from Prydz Bay, Antarctica to investigate the distribution patterns, origins, annual fluxes, and trends of organochlorine pesticides (OCPs) in the marginal sea of polar areas. The concentrations of OCPs ranged from 0.80 to 7.90 ng/g dry weight, with dichlorodiphenytrichloroethanes (DDTs) as the main components. Levels of hexachlorocyclohexanes (HCHs) and DDTs in sediment from Prydz Bay were comparable to the majority of marine sediment worldwide. The distributions of OCPs were characterized by a distinct “quasi-concentric circle” pattern, which has significantly positive relationship with total organic carbon (TOC) of sediment and controlled by the local hydrodynamic conditions and sources of organic matter. Source apportionment demonstrated that HCHs and chlordanes in Prydz Bay were mainly derived from the long range atmospheric transport (LRAT) of these compounds from off regions. However, current inputs of DDT-based compounds and lindane are suggested to exist either as a result of the LART from the neighbouring countries or re-emission from melting glacier. The annual sedimentary fluxes of OCPs were 0.007 to 7.12 pg/cm2/yr, about one to three orders of magnitude lower than some data from the Arctic areas. Based on a rough calculation of r-HCH, only 0.3–1.5% of the air-seawater net deposition would be buried in sediment, implying a long active lifetime of OCPs in Antarctica. We preliminarily indicate an increase of OCP contamination in Antarctic environment afterwards when considering the possible occurrence of “fresh” sources and low proportion of sedimentary sink.