Objective: To observe the intestinal time-dependent changes in Parkinson's disease (PD) mouse model constructed by intraperitoneal injection of paraquat (PQ) and to establish the brain-gut axis connection initially. Methods: In October 2019, 48 mice were randomly divided into treated group and control groups: treated 4-week (P-4) group, treated 6-week (P-6) group, treated 8-week (P-8) group, control 4-week (C-4) group, control 6-week (C-6) group, and control 8-week (C-8) group. The treated group was injected with 15 mg/kg PQ solution and the control group was injected with 0.9% saline (0.2 ml/20 g) by intraperitoneal injection twice a week. After the initial state (0 weeks) and the treatment at the end of 4, 6 and 8 weeks, the mood changes and motor functions of mice were assessed by neurobehavioral tests (open field test, pole climbing test, tail suspension test and elevated plus maze test) . And the number of fecal pellets for 1 h and water content were calculated to assess the functional status of the gastrointestinal tract. Western blotting experiments were performed to detect the expression levels of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in the nigrostriatal region of the mouse brain, the tight junction markers zonula occludens-1 (ZO-1) and Occludin, the inflammatory markers of integrin αM subunit (CD11b) , inducible nitric oxide synthase (iNOS) , high mobility group box 1 (HMGB1) , interleukin-1β (IL-1β) , and the neuronal markers βⅢ-tubulin and α-syn protein in the colon.Immunohistochemical staining was performed to detect the expression levels of colonic tight junction proteins ZO-1 and Occludin. Immunofluorescence staining was performed to detect the expression levels of TH in the substantia nigra region of the midbrain, and the co-localization of colonic intestine neuronal marker (βⅢ-tubulin) and Ser129 α-syn in the colonic. Results: Compared with the initial state (0 weeks) and C-8 group, mice in the P-8 group had significantly higher pole climbing test scores and resting time, and significantly lower total active distance, mean active speed, percentage of open arm entry and 1 h fecal instances (P<0.05) . After poisoning, the 1 h fecal water content of model mice first increased and then decreased, the P-4 and P-6 groups were significantly higher than the simultaneous point control group, and the P-8 groups were significantly lower than the initial state (P<0.05) . Compared with control, P-4 and P-6 groups, the expression levels of ZO-1 and Occludin in the P-8 group were significantly decreased (P<0.05) . Compared with control group, the expression levels of CD11b and IL-1β in the P-4 group were significantly increased (P<0.05) . Compared with control and P-4 group, the expression levels of CD11b, iNOS, HMGB1 and IL-1β in the P-6 and P-8 groups were significantly increased (P<0.05) . Compared with the control and P-4 groups, the expression levels of βⅢ-tubulin in the colon of mice in the P-8 group were significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased (P<0.05) . The expression level of Ser129 α-syn in the colon of model mice was negatively correlated with the expression level of βⅢ-tubulin (r(s)=-0.9149, 95%CI: -0.9771--0.7085, P<0.001) . Ser129 α-syn and βⅢ-tubulin co-localization in the colonic intermuscular plexus region increased gradually with the time of exposure. Compared with the control, P-4 and P-6 groups, the expression level of TH in the nigrostriatal region of the brain was significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased in the P-8 group (P<0.05) . Correlation analysis showed that the relative expression level of Ser129 α-syn in the nigrostriatal region of the brain was negatively correlated with the expression level of TH in the model mice (r(s)=-0.9716, 95% CI: -0.9925--0.8953, P<0.001) . Conclusion: The PD mouse model is successfully established by PQ, and the intestinal function of the model mice is reduced in a time-dependent manner. And on this basis, it is preliminary determined that the abnormal aggregation of α-syn may be an important substance connecting the brain-gut axis.
Read full abstract