Coastal waters are known for higher productivity and organic matter levels, which support a high diversity and abundance of microorganisms compared to some aquatic environments. The characterization of marine microbiomes can provide valuable information for evaluating the sustainability of coastal waters that are increasingly subjected to environmental and human impacts. Our study is the first metagenomic study realized on Moroccan Mediterranean coastal seawater. We analyzed and described the Gibraltar Detroit marine microbiome taxonomic and functional profiling using MG-RAST software. Shotgun sequencing revealed a predominance of bacterial taxa, particularly the Proteobacteria (57.29%) and Bacteroidetes (27.06%) phyla, alongside notable populations of eukaryotes, viruses, and archaea. Alphaproteobacteria and Gammaproteobacteria emerged as the dominant bacterial classes, while Flavobacteria represented a significant portion of Bacteroidetes. Functional profiling of the microbial community highlighted a wide array of metabolic pathways, emphasizing genes related to carbohydrate metabolism, amino acid synthesis, and protein processing. The marine microbiome exhibited essential biogeochemical activities, particularly in nitrogen, sulfur, and carbon cycles, with notable pathways including denitrification, thiosulfate oxidation, and carbon fixation. This functional diversity underlines the microbiome’s role in sustaining ecosystem health through nutrient cycling and organic matter degradation. Our findings offer a crucial baseline for understanding microbial community structure and resilience in Mediterranean coastal ecosystems, with implications for assessing future environmental and anthropogenic impacts on these microbial dynamics.
Read full abstract