The Moloney leukemia virus (M-MuLV) genome was introduced into undifferentiated teratocarcinoma cells by transfection of a plasmid with the virus genome linked to pSV2neo, which carries a bacterial drug resistance gene, neo, or by cotransfection with pSV2neo. In the resulting cells, the M-MuLV genome remained hypomethylated, but its expression was suppressed in cells in an undifferentiated state. The pattern of DNA methylation of the viral genome remained unchanged when the cells were induced to differentiate into epithelial tissues. However, spontaneous M-MuLV expression was detected with differentiation of the cells. To determine to what extent the viral long terminal repeat (LTR) was responsible for this suppression in undifferentiated cells, I constructed plasmids in which neo was placed under the control of the promoter sequence of the dihydrofolate reductase gene or the M-MuLV LTR, and compared the biological activities of the plasmids in Ltk- cells and in undifferentiated teratocarcinoma cells. In Ltk- cells, these plasmids were highly efficient in making the cells resistant to selection by G418. However, in undifferentiated teratocarcinoma cells, the M-MuLV LTR promoted neo gene expression at only 10% of the expected efficiency, as compared with the expression of the neo gene under the control of the simian virus to or dihydrofolate reductase promoter. Thus, the mechanisms of gene regulation are not the same in undifferentiated and differentiated teratocarcinoma cells.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access